首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1867篇
  免费   151篇
  国内免费   15篇
电工技术   22篇
综合类   23篇
化学工业   374篇
金属工艺   62篇
机械仪表   71篇
建筑科学   30篇
能源动力   134篇
轻工业   205篇
水利工程   21篇
石油天然气   20篇
无线电   214篇
一般工业技术   422篇
冶金工业   132篇
原子能技术   34篇
自动化技术   269篇
  2023年   54篇
  2022年   84篇
  2021年   153篇
  2020年   105篇
  2019年   107篇
  2018年   145篇
  2017年   120篇
  2016年   101篇
  2015年   73篇
  2014年   105篇
  2013年   163篇
  2012年   100篇
  2011年   105篇
  2010年   73篇
  2009年   58篇
  2008年   39篇
  2007年   34篇
  2006年   30篇
  2005年   16篇
  2004年   30篇
  2003年   16篇
  2002年   24篇
  2001年   17篇
  2000年   8篇
  1999年   15篇
  1998年   38篇
  1997年   32篇
  1996年   20篇
  1995年   15篇
  1994年   17篇
  1993年   17篇
  1992年   12篇
  1991年   12篇
  1990年   3篇
  1989年   13篇
  1988年   16篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有2033条查询结果,搜索用时 15 毫秒
21.
In a world in which millions of people express their opinions about commercial products in blogs, wikis, fora, chats and social networks, the distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand or organization. Opinion mining for product positioning, in fact, is getting a more and more popular research field but the extraction of useful information from social media is not a simple task. In this work we merge AI and Semantic Web techniques to extract, encode and represent this unstructured information. In particular, we use Sentic Computing, a multi-disciplinary approach to opinion mining and sentiment analysis, to semantically and affectively analyze text and encode results in a semantic aware format according to different web ontologies. Eventually we represent this information as an interconnected knowledge base which is browsable through a multi-faceted classification website.  相似文献   
22.
Autonomous mapping of HL7 RIM and relational database schema   总被引:1,自引:0,他引:1  
Healthcare systems need to share information within and across the boundaries in order to provide better care to the patients. For this purpose, they take advantage of the full potential of current state of the art in healthcare standards providing interoperable solutions. HL7 V3 specification is an international message exchange and interoperability standard. HL7 V3 messages exchanged between healthcare applications are ultimately recorded into local healthcare databases, mostly in relational databases. In order to bring these relational databases in compliance with HL7, mappings between HL7 RIM (Reference Information Model) and relational database schema are required. Currently, RIM and database mapping is largely performed manually, therefore it is tedious, time consuming, error prone and expensive process. It is a challenging task to determine all correspondences between RIM and schema automatically because of extreme heterogeneity issues in healthcare databases. To reduce the amount of manual efforts as much as possible, autonomous mapping approaches are required. This paper proposes a technique that addresses the aforementioned mapping issue and aligns healthcare databases to HL7 V3 RIM specifications. Furthermore, the proposed technique has been implemented as a working application and tested on real world healthcare systems. The application loads the target healthcare schema and then identifies the most appropriate match for tables and the associated fields in the schema by using domain knowledge and the matching rules defined in the Mapping Knowledge Repository. These rules are designed to handle the complexity of semantics found in healthcare databases. The GUI allows users to view and edit/re-map the correspondences. Once all the mappings are defined, the application generates Mapping Specification, which contains all the mapping information i.e. database tables and fields with associated RIM classes and attributes. In order to enable the transactions, the application is facilitated with the autonomous code generation from the Mapping Specification. The Code Generator component focuses primarily on generating custom classes and hibernate mapping files against the runtime system to retrieve and parse the data from the data source—thus allows bi-directional HL7 to database communication, with minimum programming required. Our experimental results show 35–65% accuracy on real laboratory systems, thus demonstrating the promise of the approach. The proposed scheme is an effective step in bringing the clinical databases in compliance with RIM, providing ease and flexibility.  相似文献   
23.
The productivity of agricultural produce is fairly dependent on the availability of nutrients and efficient use. Magnesium (Mg2+) is an essential macronutrient of living cells and is the second most prevalent free divalent cation in plants. Mg2+ plays a role in several physiological processes that support plant growth and development. However, it has been largely forgotten in fertilization management strategies to increase crop production, which leads to severe reductions in plant growth and yield. In this review, we discuss how the Mg2+ shortage induces several responses in plants at different levels: morphological, physiological, biochemical and molecular. Additionally, the Mg2+ uptake and transport mechanisms in different cellular organelles and the role of Mg2+ transporters in regulating Mg2+ homeostasis are also discussed. Overall, in this review, we critically summarize the available information about the responses of Mg deficiency on plant growth and development, which would facilitate plant scientists to create Mg2+-deficiency-resilient crops through agronomic and genetic biofortification.  相似文献   
24.
Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells’ death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.  相似文献   
25.
In the last two decades, global environmental change has increased abiotic stress on plants and severely affected crops. For example, drought stress is a serious abiotic stress that rapidly and substantially alters the morphological, physiological, and molecular responses of plants. In Arabidopsis, several drought-responsive genes have been identified; however, the underlying molecular mechanism of drought tolerance in plants remains largely unclear. Here, we report that the “domain of unknown function” novel gene DUF569 (AT1G69890) positively regulates drought stress in Arabidopsis. The Arabidopsis loss-of-function mutant atduf569 showed significant sensitivity to drought stress, i.e., severe wilting at the rosette-leaf stage after water was withheld for 3 days. Importantly, the mutant plant did not recover after rewatering, unlike wild-type (WT) plants. In addition, atduf569 plants showed significantly lower abscisic acid accumulation under optimal and drought-stress conditions, as well as significantly higher electrolyte leakage when compared with WT Col-0 plants. Spectrophotometric analyses also indicated a significantly lower accumulation of polyphenols, flavonoids, carotenoids, and chlorophylls in atduf569 mutant plants. Overall, our results suggest that novel DUF569 is a positive regulator of the response to drought in Arabidopsis.  相似文献   
26.
HPC industry demands more computing units on FPGAs, to enhance the performance by using task/data parallelism. FPGAs can provide its ultimate performance on certain kernels by customizing the hardware for the applications. However, applications are getting more complex, with multiple kernels and complex data arrangements, generating overhead while scheduling/managing system resources. Due to this reason all classes of multi threaded machines–minicomputer to supercomputer–require to have efficient hardware scheduler and memory manager that improves the effective bandwidth and latency of the DRAM main memory. This architecture could be a very competitive choice for supercomputing systems that meets the demand of parallelism for HPC benchmarks. In this article, we proposed a Programmable Memory System and Scheduler (PMSS), which provides high speed complex data access pattern to the multi threaded architecture. This proposed PMSS system is implemented and tested on a Xilinx ML505 evaluation FPGA board. The performance of the system is compared with a microprocessor based system that has been integrated with the Xilkernel operating system. Results show that the modified PMSS based multi-accelerator system consumes 50% less hardware resources, 32% less on-chip power and achieves approximately a 19x speedup compared to the MicroBlaze based system.  相似文献   
27.
In this paper, we present a new technique for mammogram enhancement using fast dyadic wavelet transform (FDyWT) based on lifted spline dyadic wavelets and normalized Tsallis entropy. First, a mammogram image is decom- posed into a multiscale hierarchy of low-subband and high-subband images using FDyWT. Then noise is suppressed using normalized Tsallis entropy of the local variance of the modulus of oriented high-subband images. After that, the wavelet coefficients of high-subbands are modified using a non-linear operator and finally the low-subband image at the first scale is modified with power law transformation to suppress background. Though FDyWT is shift-invariant and has better poten- tial for detecting singularities like edges, its performance depends on the choice of dyadic wavclcts. On the other hand, the nulnber of vanishing moments is an important characteristic of dyadic wavelets for singularity analysis because it provides an upper bound measurement for singularity characterization. Using lifting dyadic schemes, we construct lifted spline dyadic wavelets of different degrees with increased number of vanishing moments. We also examine the effect of these wavelets on mammogram enhancement. The method is tested on mammogram images, taken from MIAS (Mammographic Image Analysis Society) database, having various background tissue types and containing different abnormalities. The comparison with tile state-of-the-art contrast enhancement methods reveals that the proposed method performs better and the difference is statistically significant.  相似文献   
28.
With various emerging applications ranging from medicine to materials and electronics, the risk of exposure to nanomaterials is rapidly increasing. Several routes of exposure to nanomaterials exist; the most important being dermal contact and inhalation. In this dermal toxicity study, the cellular effects of carbon-based materials with diameters ranging from micro- to nano-dimension were investigated using mouse keratinocytes (HEL-30). The carbon materials tested included carbon fibers (CF; 10 μm diameter), carbon nanofibers (CNF; 100 nm diameter), multi-walled carbon nanotubes (MWCNT; 10 nm diameter), and single-walled carbon nanotubes (SWCNT; 1 nm diameter). CF and CNF did not significantly affect cell viability; however, MWCNT and SWCNT reduced cell viability in a time-dependent manner up to 48 h, with full recovery of mitochondrial function by the 72 h time point. After a 24 h exposure, cells exposed to MWCNT produced up to 3-fold higher increase in reactive oxygen species than those exposed to SWCNT. The results of this study suggest that high-aspect ratio carbon material toxicity is dependent on dimension and composition.  相似文献   
29.
A new phenolformaldehyde polymer resin containing potential soft‐type donor atoms (sulfur atoms) was synthesized by the reaction of sodium salt of 2,4‐dihydroxyacetophenone formaldehyde resin with carbon disulfide. The resin was characterized by elemental analysis, IR, and 1H‐NMR spectral studies. Because of its insolubility in aqueous media, the resin was successfully used in the removal of Pb(II) and Cd(II). Parameters such as the effect of pH, the effect of time, competitive studies, the effect of initial metal‐ion concentration, and the recyclability of the polymer resin were studied. The amount of metal removed by the resin was determined with atomic absorption spectrophotometry. The retention properties were strongly dependent on pH. The elution of metal ions was investigated in acid media. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1932–1936, 2004  相似文献   
30.
FDA's Process Analytical Technology (PAT) initiative provides an unprecedented opportunity for chemical engineers to play significant roles in the pharmaceutical industry. In this article, the authors provide their perspectives on (1) the need for chemical engineering principles in pharmaceutical development for a thorough process understanding; (2) applications of chemical engineering principles to meet the challenges from the semiconductor and pharmaceutical industries; and (3) the integration of chemical engineering practice into the semiconductor and pharmaceutical industries to achieve process understanding and the desired state of quality-by-design. A real-world case study from the semiconductor industry is presented to demonstrate how a classic chemical engineering concept, mixing homogeneity, can be implemented by inducing forced flow to ensure an excellent copper electrochemical plating process performance and to improve product quality substantially. Further, a case study of brake system design is discussed with the concept of Dr. Taguchi's robust engineering design to illustrate how quality-by-design can be achieved through appropriate experimental design, in conjunction with the discussion on the concept of quality-by-design in pharmaceuticals. Third, a case study of freeze-dried sodium ethacrynate is presented to demonstrate the vital importance of controlling the processing factors to achieve the desired product stability. Finally, the problems of the current pharmaceutical manufacturing mode, the opportunities and engineering challenges during implementation of PAT in the pharmaceutical industry, and the role of chemical engineering in implementation of PAT is discussed in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号